Bài 4: Một số bài toán về đại lượng tỉ lệ nghịch

NL

Cho tam giác ABC có số đo các góc A,B, C lần lượt tỉ lệ nghịch với \(\dfrac{1}{2};\dfrac{1}{3};\dfrac{2}{5}\). Tính số đo ba góc A, B, C.

NB
8 tháng 12 2018 lúc 19:19

Ta theo định nghĩa : Tổng ba góc của một tam giác bằng 1800

Ta gọi các góc A,B,C lần lượt là : c,n,l

Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\dfrac{c}{\dfrac{2}{1}}=\dfrac{n}{\dfrac{3}{1}}=\dfrac{l}{\dfrac{5}{2}}=\dfrac{180}{\dfrac{2}{1}+\dfrac{3}{1}+\dfrac{5}{2}}=24\)

Từ đó suy ra : c = 24*\(\dfrac{2}{1}\)=48

n=24*\(\dfrac{3}{1}\)=72

l=24*\(\dfrac{5}{2}\)=60

Vậy các góc tam giác ABC lần lượt bằng : 48;72;60

Chúc hk giỏi

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
NT
Xem chi tiết
PD
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết