a: Xét ΔBDC có
BM/BC=BE/BD=1/2
nên ME//DC và ME=1/2DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
=>I là trung điểm của AM
c: DC=2EM=2*2*DI=4*DI
a: Xét ΔBDC có
BM/BC=BE/BD=1/2
nên ME//DC và ME=1/2DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
=>I là trung điểm của AM
c: DC=2EM=2*2*DI=4*DI
Cho tam giác ABC, có AM là trung tuyến ứng với BC. Trên cạnh AB lấy điểm D và E sao cho AD = DE = EB. Đoạn CD cắt AM tại I. Chứng minh:
a) EM song song vói DC;
b) I là trung điểm của AM;
c) DC = 4DI.
Cho tam giác ABC, AM là đường trung tuyến. Trên cạnh AB lấy điểm D, E sao cho AD = DE=EB . Đoạn CD cắt AM tại I . Cm
a, EM// DC
b. I là trung điểm của AM
c, DC=4DI
Cho tam giác ABC, AM là đường trung tuyến. Trên cạnh AB lấy điểm D, E sao cho AD = DE=EB . Đoạn CD cắt AM tại I . Cm
a, EM// DC
b. I là trung điểm của AM
c, DC=4DI
Cho tam giác ABC trên cạnh AB lần lượt lấy hai điểm D và E sao cho AD=DE=EB. Gọi M là trung điểm BC. I là giao điểm AM và DC.
a) Cm: EM//DC
b) Gọi F là điểm đối xứng E qua M. Cm: BECF là hình bình hành.
c) Cm: DI=DC/4
Cho tam giác ABC, M là trung điểm của BC. Trên AB lấy D,C sao cho AD=DE=EB. Gọi I là giao điểm của AM và DC. Cm: AM=DC
Cho tam giác ABC có: AM là trung tuyến, I là trung điểm của AM, CI cắt AB tại D , ME // CD ( E thuộc AB ). Chứng minh : a, AD=DE=EB b, DI/DC
cho tam giác abc. trên ab lấy 2 điểm d và e sao cho ad=de=eb. gọi m là trung điểm của bc. gọi i là giao điểm của am và cd
a. CM AI= IM
b. CM DI=1/4 CD
1.Cho tam giác ABC,có AM là trung tuyến ứng với BC.trên cạnh AB lấy D và E sao cho AD=DE=EB .đoạn CD cắt AM tại I .Chứng minh:
a) EM // DC
b) I là trung điểm của AM
c)biết DI =4cm.tính độ dài đoạn thẳng CD
cho tam giác ABC có trung tuyến AM ,điểm I thuộc đoạn thẳng AM ,BI cắt AC ở I
a) nếu AD = 1/2 DC chứng minh I là trung điểm AM
b) nếu I là trung điểm AM chứng minh AD = 1/2 DC , ID=1/4 BD
c) nếu AD = 1/2 DC khi đó trên cạnh AD lấy điểm E sao cho AB =3AE chứng minh BD, CE,AM đồng quy
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM