MB

Cho tam giác ABC có góc B và góc C nhọn, đường cao AH, trung tuyến AM sao cho góc BAH= góc MAC. E là trung điểm AB.

a) c/m A,E,M,H cùng thuộc 1 đường tròn 

b) c/m góc BAC= 90 độ

NL
12 tháng 1 lúc 15:50

a.

Do E là trung điểm AB, M là trung điểm BC

\(\Rightarrow\) EM là đường trung bình tam giác ABC

\(\Rightarrow EM||AC\)

\(\Rightarrow\widehat{MAC}=\widehat{AME}\) (so le trong) (1)

Trong tam giác vuông AHB, HE là trung tuyến ứng với cạnh huyền

\(\Rightarrow HE=\dfrac{1}{2}AB=AE\) \(\Rightarrow\Delta AHE\) cân tại E

\(\Rightarrow\widehat{AHE}=\widehat{BAH}\) (2)

Mà \(\widehat{BAH}=\widehat{MAC}\) (giả thiết) (3)

(1);(2);(3) \(\Rightarrow\widehat{AME}=\widehat{AHE}\)

\(\Rightarrow AMHE\) nội tiếp (2 góc bằng nhau cùng chắn AE)

\(\Rightarrow\) 4 điểm A, E, M, H cùng thuộc 1 đường tròn

b.

Theo cmt AMHE nội tiếp \(\Rightarrow\widehat{AEM}=\widehat{AHM}=90^0\) (cùng chắn AM)

\(\Rightarrow EM\perp AB\)

Mà \(EM||AC\)

\(\Rightarrow AB\perp AC\)

\(\Rightarrow\widehat{BAC}=90^0\)

Bình luận (0)
NL
12 tháng 1 lúc 15:52

loading...

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DQ
Xem chi tiết
MN
Xem chi tiết
NA
Xem chi tiết
HK
Xem chi tiết
KL
Xem chi tiết
NK
Xem chi tiết
AN
Xem chi tiết
MT
Xem chi tiết