H24

cho tam giác abc có góc a bằng 90 độ đường cao ah vẽ đường tròn ( a: ah ) từ b và c kẻ cách tiếp tuyến bd, ce với đường tròn tâm giác (a: ah) ( de là tiếp điểm ) a, cho AB = 6cm , bc = 10cm tính ah , bd b, cm 3 điểm d,a, e thẳng hàng c; cm 4 điểm a, b, d, h cùng nằm trên đường tròn

NT
2 tháng 12 2023 lúc 7:45

a: ΔCAB vuông tại A

=>\(CA^2+AB^2=BC^2\)

=>\(CA^2=10^2-6^2=64\)

=>CA=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH\cdot10=6\cdot8=48\\BH\cdot10=6^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{48}{10}=4,8\left(cm\right)\\BH=\dfrac{36}{10}=3,6\left(cm\right)\end{matrix}\right.\)

Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

Xét (A;AH) có

BH,BD là tiếp tuyến

Do đó: BH=BD=3,6(cm)

b: Xét (A;AH) có

BH,BD là tiếp tuyến

Do đó: AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

Xét (A;AH) có

CE,CH là tiếp tuyến

Do đó: CH=CE và AC là phân giác của góc EAH

=>\(\widehat{EAH}=2\cdot\widehat{HAC}\)

\(\widehat{EAH}+\widehat{DAH}=\widehat{EAD}\)

=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{EAD}=2\cdot90^0=180^0\)

=>E,A,D thẳng hàng

c: Xét tứ giác AHBD có

\(\widehat{AHB}+\widehat{ADB}=90^0+90^0=180^0\)

=>AHBD là tứ giác nội tiếp

=>A,H,B,D cùng thuộc một đường tròn

Bình luận (2)