Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
Cho tam giác ABC vuông tại A đường cao AH. Vẽ đường phân giác AD của tam giác CHA , đường phân giác BK của tam giác ABC. Gọi giao của BK và AH, AD lần lượt là E và F. a) chứng minh tam giác AHB đồng dạng với tam giác CHA b) chứng minh tam giác AEF đồng dạng với tam giác BEH c) chứng minh KD //AH d) eh/ad = ed/dc
Cho tam giác ABC vuông tại A có đường cao AH. Chứng minh tam giác AHB, tam giác CHA đồng dạng ...yêu các bn nhìu nắm lun
Cho tam giác ABC vuông tại A có AH là đường cao.
a) chứng minh tam giác AHB đồng dạng với CHA
b) Kẻ AD là phân giác của tam giác CHA; BK là phân giác của tam giác ABC. BK lần lượt cắt AH, AD tại E và F. Chứng minh tam giác AEF đồng dạng với BEH.
c) KD//AH
d) EH/AB = KD/BC
*giúp mình câu d với ạ!
Thanks.
Cho tam giác ABC vuông tại A, đường cao AH , biết AB=15cm , AH=12cm
Chứng minh tam giác AHB đồng dạng với tam giác CHA
Câu 2. Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 15cm AH = 12cm
a) Chứng minh: tam giác AHB đồng dạng tam giác CHA b) Tính độ dài các đoạn BH, CH,ACCho tam giác ABC vuông tại A có đường cao AH
a) Chứng minh: Tam giác ABC và tam giác HBA đồng dạng rồi suy ra AB^2 = BH . BC
b) CM: Tam giác AHB đồng dạng với tam giác CHA đồng dạng rồi suy ra AH^2 = BH . CH
c) Trên tia đối của tia AC lấy điểm M sao cho AM < AC , vẽ AF vuông góc với BM tại F. Chứng minh góc BFH = góc BAH
Cho tam giác ABC vuông tại A, đường cao AH,(H thuộc BC)
a)Chứng Minh: Tam giác AHB đồng dạng với tam giác CHA
b) Trên tia đối của tia AC lấy điểm D, vẽ AE vuông góc với BD tại E
Chứng MInh: tam giác AEB đồng dạng với tam giác DAB
c) Chứng minh: BE.BD=BH.BC
d) Chứng Minh: tam giác BHE= tam giác BDC
AI GIÚP MÌNH CÂU NÀY VỚI Ạ, MÌNH CẦN GẮP LẮM
CÂU 1. CHO TAM GIÁC ABC VUÔNG TẠI A, ĐƯỜNG CAO AH, HD LÀ PHÂN GIÁC CỦA GÓC AHC. a) CHỨNG MINH TAM GIÁC ABC ĐỒNG DẠNG VỚI TAM GIÁC HAC
b) CHỨNG MINH AB × DC = AD × AC
CÂU 2. CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN, ĐƯỜNG CAO AH. VẼ HD VUÔNG GÓC VỚI AB TẠI D, HE VUÔNG GÓC VỚI AC TẠI E
a) CHỨNG MINH: TAM GIÁC AHB ĐỒNG DẠNG TAM GIÁC ADH, AH × AH = AD × AB
b) CHỨNG MINH: AD × AB = AE × AC
c) CHỨNG MINH TAM GIÁC ADE ĐỒNG DẠNG VỚI TG ACB
d) ĐƯỜNG PHÂN GIÁC GÓC AHB CẮT AB TẠI M. CM: MB = 2/5 AB VÀ TÍNH BD/DA
Cho tam giác ABC và đường cao AH . Kẻ HI vuông góc với AB tại I, HK vuông góc với AC tại K
a) Chững minh tam giác ABC và tam giác AHB đồng dạng với nhau; AH^2=AI.AB
b) Chứng minh tam giác AIK đồng dạng với tam giác ACB
c) Đừng phân giác của góc AHB cắt AB tại E. Biết EB/AB=2/5. Chứng minh rằng BI/AI=4/9