LN

Cho tam giác ABC có AD là phân giác của góc A qua d kẻ đường thẳng song song với AB cắt AC tại E cho AB = 12cm , AC = 20cm BC = 28 cm . Tính BD , DC, DE

NT
25 tháng 8 2021 lúc 13:29

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)

mà BD+CD=28cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)

Do đó: BD=10,5cm; CD=17,5cm

Xét ΔBAC có 

DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)

\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
YA
Xem chi tiết
BN
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
KN
Xem chi tiết