Ôn tập chương II - Đa giác. Diện tích đa giác

QN

Cho tam giác ABC có AD, BE,CF là các đường cao đồng quy tại H.Chứng minh rằng:\(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}=2\)

SG
26 tháng 12 2017 lúc 13:40

A B C D E F H

\(\Delta ABH\)\(\Delta ABD\) có chung đường cao kẻ từ B -> AD nên \(\dfrac{AH}{AD}=\dfrac{S_{ABH}}{S_{ABD}}\) (1)

\(\Delta AHC\)\(\Delta ADC\) có chung đường cao kẻ từ C -> AD nên \(\dfrac{AH}{AD}=\dfrac{S_{AHC}}{S_{ADC}}\) (2)

Từ (1) và (2) suy ra \(\dfrac{AH}{AD}=\dfrac{S_{ABH}}{S_{ABD}}=\dfrac{S_{AHC}}{S_{ADC}}=\dfrac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\dfrac{S_{ABH}+S_{ACH}}{S_{ABC}}\)(áp dụng tính chất của dãy tỉ số = nhau)

CMTT: \(\dfrac{BH}{BE}=\dfrac{S_{ABH}+S_{BCH}}{S_{ABC}}\)

\(\dfrac{CH}{CF}=\dfrac{S_{ACH}+S_{BCH}}{S_{ABC}}\)

Cộng vế với vế của các đẳng thức trên ta được :

\(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}=\dfrac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\dfrac{2S_{ABC}}{S_{ABC}}=2\)

(đpcm)

Bình luận (0)

Các câu hỏi tương tự
CH
Xem chi tiết
HN
Xem chi tiết
TP
Xem chi tiết
HQ
Xem chi tiết
BG
Xem chi tiết
NP
Xem chi tiết
SK
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết