Ôn tập chương II - Đa giác. Diện tích đa giác

HN

Cho tam giác ABC có các góc đều nhọn. Ba đường cao AD, BE, CF đồng qui tại H. Chứng minh rằng: AH.DH=BH.EH=CH.FH

AH
26 tháng 2 2020 lúc 12:29

Lời giải:

Xét tam giác $AHE$ và $BHD$ có:

$\widehat{AHE}=\widehat{BHD}$ (đối đỉnh)

$\widehat{AEH}=\widehat{BDH}=90^0$

$\Rightarrow \triangle AHE\sim \triangle BHD$ (g.g)

$\Rightarrow \frac{AH}{BH}=\frac{HE}{HD}$

$\Rightarrow AH.DH=BH.EH (1)$

Xét tam giác $AHF$ và $CHD$ có:

$\widehat{AHF}=\widehat{CHD}$ (đối đỉnh)

$\widehat{AFH}=\widehat{CDH}=90^0$

$\Rightarrow \triangle AHF\sim \triangle CHD$ (g.g)

$\Rightarrow \frac{AH}{CH}=\frac{HF}{HD}$

$\Rightarrow AH.HD=CH.FH(2)$

Từ $(1);(2)\Rightarrow AH.DH=BH.EH=CH.FH$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
AH
26 tháng 2 2020 lúc 12:33

Hình vẽ:
Ôn tập chương II - Đa giác. Diện tích đa giác

Bình luận (0)
 Khách vãng lai đã xóa