Ôn tập Tam giác

TT

cho tam giác ABC có AB=AC=5cm; BC=8cm. Kẻ AH⊥BC( H∈BC)
a. CM: BH=HC và góc BAH = góc CAH
b. tính độ dài AH
c. Kẻ HD⊥AB(D thuộc AB); HE⊥AC( E=AC). CMR: tam giác HDE cân

NV
12 tháng 2 2018 lúc 16:57

A B C D E H 8

a) Xét \(\Delta ABH,\Delta ACH\) có :

\(\widehat{ABH}=\widehat{ACH}\) (ΔABC cân tại A)

\(AB=AC\) (ΔABC cân tại A)

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)

=> \(\left\{{}\begin{matrix}BH=HC\text{(2 cạnh tương ứng)}\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)

=> đpcm

b) Ta có : \(BH=HC=\dfrac{1}{2}BC=\dfrac{1}{2}8=4\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H có :

\(AH^2=AB^2-BH^2\) (định lí PITAGO)

=> \(AH^2=5^2-4^2=9\)

=> \(AH=\sqrt{9}=3 \left(cm\right)\)

c) Xét \(\Delta DBH,\Delta ECH\) có :

\(\widehat{DBH}=\widehat{ECH}\) (ΔABC cân tại A)

\(BH=CH\left(cmt\right)\)

\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)

=> \(\Delta DBH=\Delta ECH\) (cạnh huyền - góc nhọn)

=> \(HD=HE\)(2 cạnh tương ứng)

Do đó: ΔHDE cân tại H (đpcm)

Bình luận (1)

Các câu hỏi tương tự
EJ
Xem chi tiết
PK
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
PN
Xem chi tiết
HN
Xem chi tiết
NH
Xem chi tiết