Cho tam giác ABC có AB < BC và D là trung điểm của AC. Trên tia đối của tia
DB lấy điểm E sao cho DE = DB.
a) Chứng minh tam giác ADE = tam giác CDB và AE // BC.
b) Từ E kẻ tia Ex vuông góc với AC tại M. Trên tia Ex lấy điểm N sao cho M là
trung điểm của EN. Chứng minh DN = BD.
c) Chứng minh BN vuông góc Ex.
a: Xét ΔADE và ΔCDB có
DA=DC
\(\widehat{ADE}=\widehat{CDB}\)
DE=DB
DO đó: ΔADE=ΔCDB
Xét tứ giác ABCE có
D là trung điểm của AC
D là trung điểm của BE
Do đó:ABCE là hình bình hành
Suy ra: AE//BC
b: Xét ΔENB có
D là trung điểm của EB
M là trung điểm của EN
Do đó: DM là đường trung bình
=>DM//BN
hay BN\(\perp\)EN
Ta có: ΔENB vuông tại N
mà ND là đường trung tuyến
nên ND=BD
Đúng 1
Bình luận (0)