H24

Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH.

a)     Chứng minh  tam giác.CHA đồng dạng tam giác CAB

b)     Kẻ AD là phân giác của góc HAC (D thuộc HC ) . Biết AC = 16 cm , CB =20 cm. Tính CH , AH và DC .

H24
26 tháng 4 2023 lúc 23:55

a) Xét ΔCHA và ΔCAB ta có:

\(\widehat{C}\) chung

\(\widehat{BAC}=\widehat{AHC}=90^0\)

\(\Rightarrow\Delta CHA\)\(\Delta CAB\left(g.g\right)\)

b)Xét ΔABC vuông tại A, áp dụng địn lí py-ta-go ta có:

\(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2\)

             \(=20^2-16^2\)

             \(=144\)

\(\Rightarrow AB=\sqrt{144}=12cm\)

vì ΔCHA∼ΔCAB(cmt)

\(\Rightarrow\dfrac{AB}{AH}=\dfrac{AC}{CH}=\dfrac{BC}{AC}hay\dfrac{12}{AH}=\dfrac{16}{CH}=\dfrac{20}{16}=\dfrac{5}{4}\)

Suy ra:

\(AH=\dfrac{12.4}{5}=9,6cm\)

\(CH=\dfrac{16.4}{5}=12,8cm\)

Xét ΔAHC có AD là phân giác ta có:

\(\dfrac{AH}{HD}=\dfrac{AC}{DC}=\dfrac{AH+AC}{CH}hay\dfrac{9,6}{HD}=\dfrac{16}{DC}=\dfrac{16+9,6}{12,8}=2\)

\(\Rightarrow DC=\dfrac{16}{2}=8cm\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
AA
Xem chi tiết
HN
Xem chi tiết
OT
Xem chi tiết
OT
Xem chi tiết
DT
Xem chi tiết
NA
Xem chi tiết
TA
Xem chi tiết
NH
Xem chi tiết