Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

DY

Cho tam giác ABC có AB = AC.Lấy điểm E trên AB,điểm F trên AC sao cho AE = AF.
a)Chứng minh BF = CE và tam giác BEC = tam giác CFB.
b)Biết BF cắt CE tại I.Cho biết IE = IF.Chứng minh tam giác IBE = tam giác ICF

NT
29 tháng 11 2023 lúc 22:14

a: Xét ΔABF và ΔACE có

AB=AC

\(\widehat{BAF}\) chung

AF=AE

Do đó: ΔABF=ΔACE

=>BF=CE

AE+EB=AB

AF+FC=AC

mà AE=AF và AB=AC

nên EB=FC

Xét ΔEBC và ΔFCB có

EB=FC

BC chung

EC=FB

Do đó: ΔEBC=ΔFCB

b: ΔABF=ΔACE

=>\(\widehat{ABF}=\widehat{ACE}\)

=>\(\widehat{IBE}=\widehat{ICF}\)

ΔBEC=ΔCFB

=>\(\widehat{BEC}=\widehat{CFB}\)

=>\(\widehat{IEB}=\widehat{IFC}\)

Xét ΔIEB và ΔIFC có

\(\widehat{IEB}=\widehat{IFC}\)

BE=CF

\(\widehat{IBE}=\widehat{ICF}\)

Do đó: ΔIEB=ΔIFC

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
BT
Xem chi tiết
NA
Xem chi tiết
NB
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
AN
Xem chi tiết