H24

Cho tam giác ABC có AB = AC. M là trung điểm của BC. a) chứng minh tam giác AMB bằng tam giác AMC. b) từ M kẻ ME vuông góc với AB và MF vuông góc với AC. Chứng minh rằng AE = EF c) chứng minh EF song song với BC b) từ B kẻ đường thẳng vuông góc với AB. Từ C kẻ đường thẳng vuông góc với AC. Hai đường thẳng này cắt nhau tại N. Chứng minh rằng A,M,N thẳng hàng.

NT
14 tháng 12 2023 lúc 19:38

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b:Sửa đề: Chứng minh AE=AF

Ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

nên EF//BC

d: Xét ΔABN vuông tại B và ΔACN vuông tại C có

AN chung

AB=AC

Do đó: ΔABN=ΔACN

=>BN=CN

=>N nằm trên đường trung trực của BC(1)

Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,N thẳng hàng

Bình luận (1)

Các câu hỏi tương tự
TD
Xem chi tiết
AN
Xem chi tiết
LL
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
TY
Xem chi tiết