H24

cho tam giác ABC có AB = AC. M là trung điểm BC

a, CMR: tam giác AMB = tam giác ANC

b, Lấy D thuộc AB. Từ d kẻ vuông góc với AM tại K và kéo dài cắt AC tại E. CMR: AD = AE. 

c, Trên tia đối của tia ED lấy F sao cho EF = MC. Gọi H là trung điểm EC

CMR: M,H,F thẳng hàng

tam giác ABC. AB = AC, B = C

NT
17 tháng 12 2023 lúc 22:35

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có: ΔAMB=ΔAMC

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAK}=\widehat{EAK}\)

=>AK là phân giác của góc DAE

Xét ΔADE có

AK là đường cao

AK là đường phân giác

Do đó: ΔADE cân tại A

c: Xét ΔBAC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

mà F\(\in\)DE và M\(\in\)BC

nên EF//MC

Xét tứ giác EFCM có

EF//CM

EF=CM

Do đó: EFCM là hình bình hành

=>EC cắt FM tại trung điểm của mỗi đường

mà H là trung điểm của EC

nên H là trung điểm của FM

=>F,H,M thẳng hàng

Bình luận (0)