H24

Cho tam giác ABC có AB = AC Gọi M là trung điểm của BC. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại I. Chứng minh: a, Tam giác AMB = tam giác AMC b. AM vuông góc BC c, IB = IC d, 3 điểm A, M, I thẳng hàng.

NT
13 tháng 12 2023 lúc 13:00

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Ta có; ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: Xét ΔABI vuông tại B và ΔACI vuông tại C có

AI chung

AB=AC

Do đó: ΔABI=ΔACI

=>IB=IC

d: Ta có: IB=IC

=>I nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là trung trực của BC(2)

Từ (1) và (2) suy ra A,M,I thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
NC
Xem chi tiết
TV
Xem chi tiết
NM
Xem chi tiết
AN
Xem chi tiết
NN
Xem chi tiết
ZZ
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết