Ta có: a2 + b2 = c2 nên tam giác ABC là tam giác vuông.
Chọn C
Ta có: a2 + b2 = c2 nên tam giác ABC là tam giác vuông.
Chọn C
Cho tam giác ABC có a = 6 cm, b = 7 cm, c = 10 cm. Tam giác ABC là
A. Tam giác nhọn
B. Tam giác tù
C. Tam giác vuông
D. Tam giác đều
Cho tam giác ABC có a = 8 cm, b = 9 cm, c = 10 cm. Tam giác ABC là
A. Tam giác nhọn
B. Tam giác tù
C. Tam giác vuông
D. Tam giác đều
Cho tam giác ABC có a = 10 cm, h a = 3 c m . Diện tích của tam giác ABC là
A. 30 ( c m ) 2
B. 15 ( c m ) 2
C. 60 ( c m ) 2
D. 7 , 5 ( c m ) 2
Cho tam giác ABC có A(1; 2), B(–2; 6), C(9; 8).
a Tính . Cm tam giác ABC vuông tại A.
b Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC.
c Tìm toạ độ trực tâm H và trọng tâm G của tam giác ABC.
d Tính chu vi, diện tích tam giác ABC.
e Tìm toạ độ điểm M trên Oy để B, M, A thẳng hàng.
f Tìm toạ độ điểm N trên Ox để tam giác ANC cân tại N.
g Tìm toạ độ điểm D để ABDC là hình chữ nhật.
h Tìm toạ độ điểm K trên Ox để AOKB là hình thang đáy AO.
Cho tam giác ABC có A(1; 2), B(–2; 6), C(9; 8).
a Tính . Cm tam giác ABC vuông tại A.
b Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC.
c Tìm toạ độ trực tâm H và trọng tâm G của tam giác ABC.
d Tính chu vi, diện tích tam giác ABC.
e Tìm toạ độ điểm M trên Oy để B, M, A thẳng hàng.
f Tìm toạ độ điểm N trên Ox để tam giác ANC cân tại N.
g Tìm toạ độ điểm D để ABDC là hình chữ nhật.
h Tìm toạ độ điểm K trên Ox để AOKB là hình thang đáy AO.
Cho tam giác ABC và điểm M nằm trong tam giác. Gọi AM, BM, CM cắt BC, CA, AB lần lượt tại A', B', C'. Chứng minh rằng M là trọng tâm tam giác ABC khi và chỉ khi M là trọng tâm tam giác A'B'C'
Cho tam giác ABC có AB = 3 cm, AC = 4 cm, BC = 5 cm. Bán kính đường tròn nội tiếp của tam giác bằng
A.1cm
B. 2 cm
C. 3 cm
D. 4 cm
Cho tam giác ABC có b = 10 cm, h b = 2 c m . Diện tích của tam giác ABC bằng
A. 10 c m 2
B. 20 c m 2
C. 40 c m 2
D. 50 c m 2
Cho tam giác ABC có \(\widehat{A}=2\widehat{B}\) , \(\widehat{C}\) tù và các cạnh đều là số nguyên dương. Tìm giá trị nhỏ nhất của chu vi tam giác ABC.