Cho tam giác ABC có ba góc nhọn. Đường cao AF, BE cắt nhau tại H. Từ A kẻ tia Ax vuông góc vs AC, từ B kẻ tia By vuông góc vs BC. Tia Ax và By cắt nhau tại K
a) Tứ giác AHBK là hình j?Tại sao?
b) CM: Tgiác HAE đồng dạng Tgiác HBF
c) CM: CE . CA = CF . CB
d) Tgiác ABC cần thêm đk j để tứ giác AHBK là hình thoi
Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau tại H. a) CM: tam giác ABE đồng dạng tam giác ACF. b) CM: góc AEF = góc ABC. c) AH cắt BC tại D, đường thẳng qua B song song với AC cắt hai tia EF, ED theo thứ tự tại M, N. CM: BM=BN
Cho tam giác ABC có 3 góc nhọn ( AB<AC ), các đường cao AD, BE, CF cắt nhau tại H.
a) CM : Tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) CM : Tam giác AEF đồng dạng tam giác ABC và góc AEF = góc ABC
c) Gọi I là trung điểm của AH, M là trung điểm của BC. CM : MI vuông góc EF
Bài 8: Cho tam giác ABC nhọn, AB < AC các đường cao AD, BE, CF đồng quy tại trực tâm H.
1. Chứng minh HE HB = HF HC.
2. Chứng minh AF.AB=AE.AC=AH.AD và góc AFE = góc ACB = góc AHE
3. AH cắt EF tại I.Chứng minh IA.IH=IE.IF
Cho tam giác abc có 3 góc nhọn 2 đừơng cao be,cf cắt nhau tại h
A, cm ah vuông góc với bc
B, ae.ac=af.ab
C, tam giác aef đồng dạng với tam giác abc
cho tam giác ABC có 3 góc nhọn , 2 đường cao BE và CF cắt nhau tại H
a/ Chứng minh tam giác AEB ~ tam giác AFC
b/ chứng minh tam giác DEF ~ tam giác ABC
c/ Tia AH cắt BC tại D. Chứng minh FC là tia phân giác góc DFE ?
Cho tam giác ABC có 3 góc nhọn, hai đường cao BE, CF cắt nhau tại H. Chứng minh:
a. AH vuông góc BC tại D
b.CM CE.CA= CD.CB
Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H chứng minh:
A, tam giác ABE vuông góc với tâm giác ACF
B, AEF = ABC