BB

Cho tam giác ABC cân tại B. Tia phân giác góc A cắt BC tại N; tia phân giác góc C cắt AB tại M. Chứng minh : MN // AB.

NT
12 tháng 11 2023 lúc 10:49

Sửa đề: Chứng minh MN//AC

Ta có: AN là phân giác của góc BAC
=>\(\widehat{BAN}=\dfrac{1}{2}\cdot\widehat{BAC}\left(1\right)\)

CM là phân giác của góc BCA

=>\(\widehat{BCM}=\dfrac{1}{2}\cdot\widehat{BCA}\left(2\right)\)

ΔBAC cân tại B

=>\(\widehat{BAC}=\widehat{BCA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{BAN}=\widehat{BCM}\)

Xét ΔBAN và ΔBCM có

\(\widehat{BAN}=\widehat{BCM}\)

BA=BC

\(\widehat{ABN}\) chung

Do đó: ΔBAN=ΔBCM

=>BN=BM

Xét ΔBAC có \(\dfrac{BM}{BA}=\dfrac{BN}{BC}\)

nên MN//AC

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
TD
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
BP
Xem chi tiết
KT
Xem chi tiết