Cho tam giác ABC cân tại B, điểm O là trung điểm AC. Điểm D đối xứng với B qua O. a) Chứng minh: Tứ giác ABCD là hình thoi. b) Kẻ DE L BC tại E, kẻ BF I AD tại F. Chứng minh tứ giác BEDF là hình chữ nhật. c) Gọi K là giao điểm của DE và CO, kẻ KM L CD tại M. Chứng minh: Ba điểm B, K, M thẳng hàng. d) Gọi I là trung điểm KC. Chứng minh: OM L MI
a: Ta có: ΔBAC cân tại B
mà BO là đường trung tuyến
nên BO\(\perp\)AC
Xét tứ giác ABCD có
O là trung điểm chung của AC vàBD
=>ABCD là hình bình hành
Hình bình hành ABCD có BA=BC
nênABCD là hình thoi
b: Ta có:ABCD là hình bình hành
=>AD//BC và AB//CD
Ta có: AD//BC
F\(\in\)AD
E\(\in\)BC
Do đó: DF//BE
Ta có: AD//BC
BF\(\perp\)AD
Do đó: BF\(\perp\)BC
ta có: BF\(\perp\)BC
DE\(\perp\)BC
Do đó: BF//DE
Xét tứ giác BFDE có
BF//DE
BE//DF
Do đó: BFDE là hình bình hành
Hình bình hành BFDE có BF\(\perp\)FD
nên BFDE là hình chữ nhật
c: Xét ΔBDK có
KO,BE là các đường cao
KO cắt BE tại C
Do đó: C là trực tâm của ΔBDK
=>DC\(\perp\)BK tại M
mà KM\(\perp\)CD tại M
và BK,KM có điểm chung là K
nên B,K,M thẳng hàng