Ôn tập Tam giác

VT

Cho tam giác ABC cân tại A.Trên tia đối của các tia BA và CA lần lượt lấy hai điểm D và E sao cho BD=CE.Từ D kẻ DM vuông góc với BC,từ E kẻ EN vuông góc với BC.

a)Chứng minh DM=EN

b)Chứng minh tam giác AMN cân

c)Từ B và C kẻ BH vuông góc với AM,CK vuông góc với AN,chúng cắt nhau tại I.Chứng minh AI vuông góc với MN

VT
24 tháng 2 2022 lúc 12:31

Giải hộ mik ý c nha, mik đg cần gấp

 

 

Bình luận (0)
NT
24 tháng 2 2022 lúc 12:43

a: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có

BD=CE

\(\widehat{MBD}=\widehat{NCE}\)

Do đó:ΔMBD=ΔNCE

Suy ra: DM=EN

b: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

\(\widehat{HMB}=\widehat{KNC}\)

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

=>IB=IC

hay I nằm trên đường trung trực của BC(1)

Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AI là đường trung trực của BC

=>AI⊥BC

=>AI⊥MN

Bình luận (0)
BL
25 tháng 4 2022 lúc 21:04

xin hình

Bình luận (0)