OG

Cho tam giác ABC cân tại A. Vẽ AH là tia phân giác của góc BAC ( H thuộc BC). a) Chứng minh tam giác ABH = tam giác ACH . Khi góc BAC bằng 300, tính số đo góc ABC. b) Gọi D là trung điểm của AC. Trên tia đối của tia DH lấy điểm E sao cho D là trung điểm của HE. Gọi F là trung điểm của AH, Q là giao điểm của CF và HD. Chứng minh AH song song với CE và HQ=1/3 HE.

NT
6 tháng 4 2022 lúc 22:10

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

b: \(\widehat{ABC}=\dfrac{180^0-30^0}{2}=75^0\)

c: Xét tứ giác AHCE có

D là trung điểm của AC

D là trung điểm của HE

Do đó: AHCE là hình bình hành

Suy ra: AH//CE

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
TM
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
CH
Xem chi tiết
LT
Xem chi tiết
DC
Xem chi tiết
ML
Xem chi tiết
FV
Xem chi tiết