Cho tam giác ABC cân tại A trung tuyến AM. Qua điểm B vẽ đường thẳng song song AC cắt đường thẳng AM tại D
a, C/m tam giác AMC = tam giác DMB
b, C/m AB = BD
c, Gọi P là trung điểm đoạn thẳng AB, đoạn thẳng PD cắt đoạn thẳng PC tại O. Trên tia đối tia PC lấy điểm N sao cho PN = PO. C/m O là trọng tâm tam giác ABD và NA = 2 lần OM
a) Xét ΔAMC và ΔDMB có
\(\widehat{ACM}=\widehat{DBM}\)(hai góc so le trong, AC//BD)
MC=MB(M là trung điểm của BC)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
Do đó: ΔAMC=ΔDMB(g-c-g)
b) Ta có: ΔAMC=ΔDMB(cmt)
nên AC=DB(hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên AB=BD