PA

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. BH kéo dài căt CK tại I. Chứng minh rằng:

a, △AHK, △IHK, △DEA, △IDE là tam giác cân
b, AI là phân giác của các góc DAE, BAC, BIC

NT
6 tháng 1 2022 lúc 19:54

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

hay ΔADE cân tại A

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

hay ΔAHK cân tại A

Xét ΔAIH vuông tại B và ΔAIK vuông tại K có

AI chung

AH=AK

Do đó: ΔAIH=ΔAIK

Suy ra:IH=IK

hay ΔIHK cân tại I

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
BN
Xem chi tiết
PH
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết