Do ∆ABC cân tại A
⇒ AB = AC và ∠ABC = ∠ACB
AK = AH
⇒ BK = CH
Xét ∆BHC và ∆CKB có:
CH = BK (cmt)
∠BCH = ∠CBK (∠ACB = ∠ABC)
BC chung
⇒ ∆BHC = ∆CKB (c-g-c)
⇒ ∠HBC = ∠KCB (hai góc tương ứng)
∠OBC = ∠OCB
∆OBC có ∠OBC = ∠OCB
⇒ ∆OBC cân tại O
Đúng 2
Bình luận (0)