MA

Cho tam giác ABC cân tại A . Lấy điểm M trên cạnh BC (MB MC). Trên tia đối của tia CB lấy điểm N sao cho BM CN . Đường thẳng qua M vuông góc với BC cắt AB tại E . Đường thẳng qua N vuông góc BC cắt AC tại F .

a) Chứng minh: EM FN

b) Qua E kẻ ED // AC ( D BC ). Chứng minh MB< MD .

c) EF cắt BC tại O . Chứng minh OE= OF .

NT
3 tháng 12 2023 lúc 13:47

a: ΔACB cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)

nên \(\widehat{ABC}=\widehat{FCN}\)

Xét ΔEBM vuông tại M và ΔFCN vuông tại N có

BM=CN

\(\widehat{EBM}=\widehat{FCN}\)

Do đó: ΔEBM=ΔFCN

=>EM=FN

b: ED//AC

=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EDB}=\widehat{ABC}\)

=>\(\widehat{EBD}=\widehat{EDB}\)

=>ΔEBD cân tại E

ΔEBD cân tại E

mà EM là đường cao

nên M là trung điểm của BD

=>MB=MD

c: EM\(\perp\)BC

FN\(\perp\)BC

Do đó: EM//FN

Xét ΔOME vuông tại M và ΔONF vuông tại N có

ME=NF

\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)

Do đó: ΔOME=ΔONF

=>OE=OF

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
VD
Xem chi tiết
NA
Xem chi tiết
AS
Xem chi tiết
DA
Xem chi tiết
LA
Xem chi tiết
KI
Xem chi tiết
VG
Xem chi tiết
KN
Xem chi tiết