H24

Cho tam giác ABC cân tại A. Kẻ đường cao AH ( H thuộc BC ). Gọi M, N lần
lượt là trung điểm của các cạnh AB, AC.
a) Chứng minh tứ giác BMNC là hình thang cân.
b) Gọi D là điểm đối xứng của H qua N. Chứng minh tứ giác AHCD là hình
chữ nhật.
c) Chứng minh tứ giác ABHD là hình bình hành.
d) Tìm điều kiện của tam giác cân ABC để tứ giác AHCD là hình vuông

NT
9 tháng 9 2021 lúc 10:04

a: Xét ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Do đó: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{MBC}=\widehat{NCB}\)

nên BMNC là hình thang cân

b: Xét tứ giác AHCD có 

N là trung điểm của đường chéo AC

N là trung điểm của đường chéo HD

Do đó: AHCD là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

 

Bình luận (0)
NT
9 tháng 9 2021 lúc 10:05

c: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh đáy BC

nên H là trung điểm của BC

Suy ra: BH=CH

mà CH=AD

nên BH=AD

Xét tứ giác ABHD có 

AD//BH

AD=BH

Do đó: ABHD là hình bình hành

d: Để AHCD trở thành hình vuông thì AH=CH

hay \(AH=\dfrac{BC}{2}\)

Xét ΔABC có

AH là đường trung tuyến ứng với cạnh BC

\(AH=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

hay \(\widehat{BAC}=90^0\)

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
Xem chi tiết
Xem chi tiết
DT
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết
HV
Xem chi tiết
HV
Xem chi tiết
PL
Xem chi tiết