CR

Cho tam giác ABC cân tại A. Kẻ BD ^ AC, CE ^ AB (D Î AC; E Î AB). Gọi O là giao điểm của BD và CE. 

a/ Chứng minh  tam giác  ADB = D AEC 

b/ Chứng minh  tam giác  BOC cân 

c/ Chứng minh ED//BC 

d/ Gọi M là trung điểm BC. Chứng minh BC = 2EM. 

NT
1 tháng 3 2022 lúc 21:24

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

Bình luận (0)
KQ
1 tháng 3 2022 lúc 21:35

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

ˆBADBAD^ chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: ˆOCB=ˆOBCOCB^=OBC^

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

Bình luận (0)