Ôn tập Tam giác

NH

Cho tam giác ABC cân tại A, kẻ AI ⊥ BC(H∈BC)

a,Chứng minh:∠BAH=∠CAH

b,Biết AH=3cm,BC=8cm.Tính độ dài AC

c,Kẻ HE ⊥ AB,HD ⊥ AC.Chứng minh:AE=AD

d,Chứng minh:ED//BC

VT
6 tháng 2 2020 lúc 18:09

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(AB=AC\) (tính chất tam giác cân).

Xét 2 \(\Delta\) vuông \(ABH\)\(ACH\) có:

\(\widehat{AHB}=\widehat{AHC}=90^0\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

Cạnh AH chung

=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - cạnh góc vuông).

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).

b) Theo câu a) ta có \(\Delta ABH=\Delta ACH.\)

=> \(BH=CH\) (2 cạnh tương ứng).

=> H là trung điểm của \(BC.\)

=> \(BH=CH=\frac{1}{2}BC\) (tính chất trung điểm).

=> \(BH=CH=\frac{1}{2}.8=\frac{8}{2}=4\left(cm\right).\)

+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:

\(AC^2=AH^2+CH^2\) (định lí Py - ta - go).

=> \(AC^2=3^2+4^2\)

=> \(AC^2=9+16\)

=> \(AC^2=25\)

=> \(AC=5\left(cm\right)\) (vì \(AC>0\)).

c) Vì \(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

=> \(\widehat{EAH}=\widehat{DAH}.\)

Xét 2 \(\Delta\) vuông \(AEH\)\(ADH\) có:

\(\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\)

Cạnh AH chung

\(\widehat{EAH}=\widehat{DAH}\left(cmt\right)\)

=> \(\Delta AEH=\Delta ADH\) (cạnh huyền - góc nhọn).

=> \(AE=AD\) (2 cạnh tương ứng).

d) Xét \(\Delta ADE\) có:

\(AE=AD\left(cmt\right)\)

=> \(\Delta ADE\) cân tại \(A.\)

=> \(\widehat{AED}=\widehat{ADE}\) (tính chất tam giác cân).

=> \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\) (1).

Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}.\)

Mà 2 góc này nằm ở vị trí đồng vị.

=> \(ED\) // \(BC\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
H24
6 tháng 2 2020 lúc 16:34

a) Xét ΔABH;ΔACH có :

AB=AC (tam giác ABC cân tại A)

ABHˆ=ACHˆ (tam giác ABC cân tại A)

AH:chung

=> ΔABH=ΔACH(c.g.c)

=> BAHˆ=CAHˆ (2 góc tương ứng)

b)

Xét ΔABC cân tại A (gt) có :

AH là đường cao đồng thời là tia phân giác trong ΔABC

=> AH cũng là đường trung trực trong ΔABC

=> BH=HC(tính chất đường trung trực)

Nên : BH=HC=12BC=12.8=4(cm)

Xét ΔAHB có :

AHB^=90o(AH⊥BC−gt)

=> ΔAHB vuông tại H

Ta có : AB2=AH2+BH2(Định lí PYTAGO)

=> AB2=42+32=25

=> AB=25−−√=5(cm)AB=25=5(cm)

Mà có : AB=AC (gt)

=> AC=5cm(đct)

c) Xét ΔAEH;ΔADH có :

EAHˆ=DAHˆ(cmt)

AH:chung

AEHˆ=ADHˆ(=90o)

=> ΔAEH=ΔADH (cạnh huyền - góc nhọn)

=> AE=AD( 2 cạnh tương ứng)

d) Xét ΔADEcó :

AD=AE(cmt)

=> ΔADEcân tại A

Ta có : AEDˆ=ADEˆ=180o−BACˆ2(1)

Xét ΔABC cân tại A (gt) có :

ABCˆ=ACBˆ=180o−BACˆ2(2)

Từ (1) và (2) => AEDˆ=ABCˆ(=180O−BACˆ2)

Mà ta thấy : 2 góc này ở vị trí đồng vị

=> ED // BC (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
6 tháng 2 2020 lúc 16:37
https://i.imgur.com/viAopmy.jpg
Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HT
Xem chi tiết
PK
Xem chi tiết
EJ
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
LL
Xem chi tiết
PN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết