Nên AI là tia phân giác của góc BAC
Mà tam giác ABC cân tại A
Do đó AI vừa là phân giác, đồng thời vừa là trung tuyến và vừa là đường trung trực ứng với cạnh BC của tam giác ABC
Vậy A, B, C đều đúng.
Chọn đáp án D
Nên AI là tia phân giác của góc BAC
Mà tam giác ABC cân tại A
Do đó AI vừa là phân giác, đồng thời vừa là trung tuyến và vừa là đường trung trực ứng với cạnh BC của tam giác ABC
Vậy A, B, C đều đúng.
Chọn đáp án D
A,B,M thẳng hàng. Cho tam giác ABC cân ở A. Hai tia phân giác của góc ABC và của góc ACB cắt nhau ở I. Chứng minh: a, tam giác BIC cân tại I. b, AI là đường trung trực của BC
Cho tam giác ABC cân tại A,hai trung tuyến BE và CF cắt nhau tại I.
a)Vẽ hình và c/m AI vừa là đường trung tuyến vừa là đường phân giác của tam giác ABC.
b)C/m BE=CF và tam giác IBC là tam giác cân.
c)Trên tia đối của tia AI lấy điểm P sao cho I là trung điểm của AP. Từ P kẻ đường thẳng vuông góc với AB,đường thẳng này cắt đường thẳng BC tại K.C/m AK vuông góc với BP.
d)C/m KP+PI lớn hơn AB
Cho tam giác ABC cân ở A. Hai tia phân giác của góc ABC và của góc ACB cắt nhau tại I. Chứng minh:
a, Tam giác BIC cân tại I
b, AI là đường trung trực của BC
Cho tam giác ABC cân tại A. Các đường phân giác góc B và C cắt nhau tại I.
a) Chứng minh tam giác BIC là tam giác cân;
b) So sánh góc BAI và góc IAC;
c) Chứng minh tia AI đi qua trung điểm của BC. Từ đó có thể rút ra kết luận đường phân giác của góc ở đỉnh tam giác cân cũng là đường trung tuyến được không?
Bài 1:
Cho tam giác ABC cân tại A, từ B kẻ đường thẳng x vuông góc với AB, từ C kẻ đường thẳng y vuông góc với AC, x cắt y tại M.
Chứng minh: AM là tia phân giác của góc BAC.
Bài 2:
Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt đường trung trực BC tại I. Kẻ IH vuông góc với AB; IK vuông góc với AC.
Chứng minh: BH = CK.
Bài 3:
Cho tam giác ABC cân tại A, các đường trung trực của AB và AC cắt nhau tại I.
Chứng minh: AI là tia phân giác của góc BAC.
Bài 1:
Cho tam giác ABC cân tại A, từ B kẻ đường thẳng x vuông góc với AB, từ C kẻ đường thẳng y vuông góc với AC, x cắt y tại M.
Chứng minh: AM là tia phân giác của góc BAC.
Bài 2:
Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt đường trung trực BC tại I. Kẻ IH vuông góc với AB; IK vuông góc với AC.
Chứng minh: BH = CK.
Bài 3:
Cho tam giác ABC cân tại A, các đường trung trực của AB và AC cắt nhau tại I.
Chứng minh: AI là tia phân giác của góc BAC.
Cho tam giác ABC cân tại A.Kẻ các tia phân giác BD và CE của góc B và C.BD cắt CE tại I.Chứng minh:
a)BD=CE
b)AI là tia phân giác của góc BAC
c)DE//BC
d)AI là đường trung trực của BC
1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.
2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.
3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.
4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.
5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.
1.Cho tam giác ABC các tia phân giác của góc B và góc C cắt nhau ở O..Gọi DEF lần lượt là chân đường vuông góc kẻ từ điểm O đến BC,CA,AB(D thuộc BC,E thuộc AC,F thuộc AB) tia Ao cắt BC ở M.CMR a,OD=OE=OF b,Góc MOC=góc DOB 2.Cho tam giác abc có góc A bằng 120 độ.Các tia phân giác của góc A và góc C cắt nhau ở O,cắt các cạnh BC và AB lần lượt ở D và E.Đường phân giác góc ngoài tại đỉnh B của tam giác ABC cắt đường thẳng AC ở F.CM a,BO vuông góc BF b,góc BDF=góc ADF c,3 điểm DEF thẳng hàng 3.CMR 1 tam giác có 1 trung tuyến đồng thời là phân giác thì tam giác đó là tam giác cân CẦN 1 AI ĐÓ GIẢI HỘ Ạ!!MAI PHẢI NỘP RỒI AI LÀM DÙM VỚI Ạ!!
Cho tam giác ABC cân tại A. Vẽ các đường phân giác BM và CN cắt nhau tại I.
a. CMR: góc ABM=góc ACN, từ đó suy ra tam giác ABM = tam giác ACN
b. CMR: AI là trung trực của BC
c. Vẽ đường thẳng đi qua C và song song với BM, có cắt tia AI tại K. CMR: tam giác ICK là tam giác cân.
d. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tia Ax vuông góc với AI. Tia Ax cắt tia BM tại E. CMR: EC vuông góc với CN.