BN

Cho tam giác ABC cân tại A. D thuộc cạnh AB, E thuộc cạnh AC để AD=AE, BE cắt CD tại K, AK cắt BC tại H. Chứng minh:

a. BE=CD

b. Tam giác KBD= tam giác KCE

c. AK là p/g góc BAC

d. AK vuông góc BC

e. DE//BC

NT
29 tháng 1 2024 lúc 8:43

a: Xét ΔAEB và ΔADC có

AE=AD
\(\widehat{BAE}\) chung

AB=AC

Do đó; ΔAEB=ΔADC

=>EB=DC

b: Ta có: ΔAEB=ΔADC

=>\(\widehat{ABE}=\widehat{ACD}\)

Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

=>\(\widehat{BDC}=\widehat{CEB}\)

Xét ΔKDB và ΔKEC có

\(\widehat{KDB}=\widehat{KEC}\)

DB=EC

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

c: Ta có: ΔKDB=ΔKEC

=>KB=KC

Xét ΔABK và ΔACK có

AB=AC

BK=CK

AK chung

Do đó: ΔABK=ΔACK

=>\(\widehat{BAK}=\widehat{CAK}\)

=>AK là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AK là đường phân giác

nên AK là đường cao

=>AK\(\perp\)BC

e: Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
LN
Xem chi tiết
PB
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết