Cho tam giác ABC có trung tuyến kẻ từ B và C vuông góc với nhau.tính cosA
cho tam giác ABC . Chứng minh rằng điều kiện cần và đủ để 2 trung tuyến kẻ từ B và C vuông góc với nhau là : b2 + c2 = 5a2
.Cho tam giác ABC có A(4;3) , B(0; 5) , C(6; 2) .
a) Chứng minh :ABC vuông tại B . Tính diện tích tam giác ABC.
b) Tìm tọa độ điểm K là chân đường cao kẻ từ B của tam giác ABC.
c) Tìm tọa độ điểm I là tâm đường tròn ngoại tiếp tam giác ABC.
d) Tìm tọa độ điểm J là tâm đường tròn nội tiếp tam giác ABC.
cho 2 tam giác vuông cân ABC và AB1C1 có chung đỉnh A . Gọi I và J lần lượt là trung điểm của 2 đoạn thẳng BB1 và CC1 . Chứng minh rằng : a) AI vuông góc với CC1 , AJ vuông góc với BB1 ; b) BC1 vuông góc với B1C .
Cho tam giác ABC không cân. Đường tròn tâm I nội tiếp tam giác , tiếp xúc với các cạnh BC, CA, AB lần lượt tại A', B', C' . Đường thằng B'C' cắt BC tại D. Chứng minh ID vuông góc với AA'
a) Tính GTLN của : \(\frac{\left(x^2+2x+3\right)\left(x^2+2x+9\right)}{x^2+2x+1}\)
b) Cho tam giác cân có cạnh đáy là 24, cạnh bên là 20. Tính độ dài đường cao ứng với cạnh bên của tam giác trên
c) Cho tam giác ABC có AB = 48, AC = 14, BC = 50. Tính độ dài đường trung tuyến AM của tam giác
trong mạt phẳng Oxy cho tam giác ABC có A(-1,0) , B(1,2) , C(5,-2) : a) hỏi tam giác ABC là tam giác gì ? Tính diện tích tam giác ABC ; b) gọi H là chân đường cao kẻ từ B của tam giác ABC . Tìm tọa độ của H .
cho mặt phẳng Oxy cho tam giác ABC biết A(1,-3) , B(3,-5) , C(2,-2) : a) tìm M trên Ox sao cho tam giác ABM cân tại M ; b) tìm N trên Oy sao cho tam giác ABN vuông tại A
a) Tam giác ABC vuông tại A, đường cao AH, gọi I,J là trung điểm của AH, HC. Chứng minh BI vuông góc với AJ b) Tìm M thỏa mãn (vectơ MA+vectơ MB)(vectơ MA+vectơ MC)=0