H24

Cho tam giác ABC cân tại A, có M là trung điểm của cạnh BC. Gọi D là điểm đối xứng với điểm A qua M.

a) Chứng minh tứ giác ABCD là hình thoi

b)Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. Chứng minh tứ giác ADBF là hình bình hành

H24
19 tháng 7 2021 lúc 16:19

a/ Tứ giác ABCD có:
- AM=MD (gt)
- MB=MC (gt)
=> Tứ giác ABCD là hình bình hành
Do △ABC là tam giác cân suy ra AM vừa là trung tuyến vừa là đường cao hay AM⊥BC
=> ABCD là hình thoi (đpcm)

b/ Hình thoi ABCD (cmt) có AC//BD => CF//BD => AF//BD (1)
Mặt khác ta có: AD⊥BC ; BF⊥BC => AD//BF (2)
AF và BD cùng cắt AD và BF (3)
Từ (1), (2), (3):
Vậy tứ giác ADBF là hình bình hành (đpcm)

Bình luận (0)
NT
19 tháng 7 2021 lúc 20:29

a) Xét tứ giác ABDC có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AD(A và D đối xứng với nhau qua M)

Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ABDC có AB=AC(ΔABC cân tại A)

nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)

Bình luận (0)
NT
19 tháng 7 2021 lúc 20:35

b) Ta có: ΔABC cân tại A(gt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(gt)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

Suy ra: AM\(\perp\)BC

mà BF\(\perp\)BC(gt)

nên AM//BF

hay AD//BF

Xét tứ giác ADBF có 

AD//BF(cmt)

AF//BD(ABCD là hình thoi)

Do đó: ADBF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HL
Xem chi tiết
BN
Xem chi tiết
HL
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
LH
Xem chi tiết
NL
Xem chi tiết
BT
Xem chi tiết