PP

Cho tam giác ABC cân tại A có AB=34cm,BC=32cm.Kẻ đường trung tuyến AM.

A)chứng minh AM vuông góc BC.

B)tính AM

NT
20 tháng 4 2022 lúc 18:30

a.Ta có: AM là đường trung tuyến trong tam giác cân ABC 

=> Cũng là đường cao

=> AM vuông góc với BC

b.Có AM là đường trung tuyến \(\Rightarrow BM=BC:2=32:2=16cm\)

Áp dụng định lý pytago vào tam giác vuông ABM, có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM^2=34^2-16^2\)

\(AM=\sqrt{900}=30cm\)

 

Bình luận (2)
NV
20 tháng 4 2022 lúc 19:30

A C B 34 cm 32 cm M

\(a)\text{Xét }\Delta ACM\text{ và }\Delta ABM\text{ có:}\)

\(AB=AC\left(\Delta ABC\text{ cân tại A}\right)\)

\(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\)

\(AM\text{ chung}\)

\(\Rightarrow\Delta ACM=\Delta ABM\left(c-g-c\right)\)

\(\Rightarrow\widehat{AMC}=\widehat{AMB}\left(\text{hai góc tương ứng}\right)\)

\(\text{Mà chúng kề bù}\)

\(\Rightarrow\widehat{AMC}=\widehat{AMB}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow AM\perp BC\)

\(b)\text{Ta có:}\Delta ACM=\Delta ABM\left(cmt\right)\)

\(\Rightarrow CM=BM\left(\text{hai cạnh tương ứng}\right)\)

\(\Rightarrow CM=BM=\dfrac{BC}{2}=\dfrac{32}{2}=16\left(cm\right)\)

\(\text{Xét }\Delta AMB\text{ vuông tại M có:}\)

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM^2=AB^2-BM^2\left(\text{định lý Py ta go}\right)\)

\(\Rightarrow AM^2=34^2-16^2=1156-256=900\)

\(\Rightarrow AM=\sqrt{900}=30\left(cm\right)\)

 

 

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết
ET
Xem chi tiết
ET
Xem chi tiết
PB
Xem chi tiết
VT
Xem chi tiết
LN
Xem chi tiết