HN

Cho tam giác ABC cân tại A, có 𝐵𝐴𝐶 ෣ = 700 . Vẽ AH vuông góc với BC. a) Chứng minh tam giác AHB = tam giác AHC và AH là tia phân giác của góc BAC. b) So sánh độ dài cạnh AH và BH. c) Từ H vẽ HD vuông góc AB và HE vuông góc AC . Tam giác ADE là tam giác gì ? Vì sao? d) Qua D vẽ đường thẳng DK vuông góc với BC tại K. Chứng minh DK < KE

NT
4 tháng 3 2022 lúc 21:57

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: \(\widehat{BAC}=70^0\)

nên \(\widehat{BAH}=35^0\)

=>\(\widehat{B}=55^0\)

=>BH<AH

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: AD=AE

hay ΔADE cân tại A

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
NL
Xem chi tiết
DC
Xem chi tiết
TL
Xem chi tiết
NT
Xem chi tiết
DC
Xem chi tiết
ND
Xem chi tiết
Xem chi tiết
CH
Xem chi tiết