NK

Cho tam giác ABC cân tại A, AM là tia phân giác của góc A (M thuộc BC). Trên tia đối của tia BC lấy điểm D. Trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh rằng:

a) tam giác ABM = ACM

b) AM vuông góc BC

c) góc ADC = AEB

NT

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

b: ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

=>\(\widehat{ADB}=\widehat{AEC}\)

=>\(\widehat{ADC}=\widehat{AEB}\)

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
DH
Xem chi tiết
CS
Xem chi tiết
TV
Xem chi tiết
VM
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
HV
Xem chi tiết
NT
Xem chi tiết