PT

Cho tam giác ABC cân tại A, AM là đường trung tuyến. Gọi D là trung điểm của AC. Lấy N đối xứng với M qua D.

a, Tứ giác AMCN là hình gì ? Chứng minh ?

b, Chứng minh tứ giác ABMN là hình bình hành ?

c, Biết AB = 5cm, BC =6cm. Tính diện tích tứ giác AMCN ?

Giúp mik với nha :)))

 

NM
21 tháng 12 2021 lúc 22:40

\(a,\) Vì AM là trung tuyến tam giác cân tại A nên AM cũng là đường cao

Vì D là trung điểm AC và MN nên AMCN là hình bình hành

Mà \(AM\bot BC\Rightarrow AM\bot MC\)

Do đó: AMCN là hình chữ nhật

\(b,\) Vì AMCN là hcn nên \(AM=AC;AN=MC\)

Mà \(AB=AC;MB=MC\Rightarrow AM=AB;AN=MB\)

Vậy ABMN là hình bình hành

\(c,\) Ta có \(BM=MC=\dfrac{1}{2}BC=3(cm)\)

Áp dụng PTG vào tam giác ABM vuông M

\(AM=\sqrt{AB^2-BM^2}=4\left(cm\right)\)

Do đó \(S_{AMCN}=AM\cdot MC=4\cdot3=12\left(cm^2\right)\)

Bình luận (0)
TT
21 tháng 12 2021 lúc 22:39

a) Xét tam giác ABC cân tại A: AM là trung tuyến (gt).

\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) AM \(\perp\) BC. \(\Rightarrow\) \(\widehat{AMC}\) = 90o.

Xét tứ giác AMCN có:

+ D là trung điểm của MN (N đối xứng với M qua D).

+ D là trung điểm của AC (gt).

\(\Rightarrow\) Tứ giác AMCN là hình bình hành (dhnb).

Lại có:  \(\widehat{AMC}\) = 90o (cmt).

 \(\Rightarrow\) Tứ giác AMCN là hình chữ nhật (dhnb).

b) Tứ giác AMCN là hình chữ nhật (cmt).

\(\Rightarrow\) AN // MC (Tính chất hình chữ nhật).

\(\Rightarrow\) AN // BM.

Vì AM là trung tuyến của tam giác ABC (gt). \(\Rightarrow\) M là trung điểm của BC.

\(\Rightarrow\) BM = MC = \(\dfrac{1}{2}\)BC.

Mà AN = MC (Tứ giác AMCN là hình chữ nhật).

\(\Rightarrow\) BM = MC = AN.

Xét tứ giác ABMN có:

+ BM = AN (cmt).

+ BM // AN (cmt).

\(\Rightarrow\) Tứ giác ABMN là hình bình hành (dhnb).

c) Ta có: BM = MC = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).6 = 3 (cm).

Xét tam giác AMB vuông tại M có:

AB2 = AM2 + BM2 (Định lý Pytago).

Thay số: 52 = AM2 + 32.

\(\Leftrightarrow\) 25 = AM2 + 9. \(\Leftrightarrow\) AM2 = 16. \(\Leftrightarrow\) AM = 4 (cm).

Diện tích hình chữ nhật AMCN là: 3 . 4 = 12 (cm2).

Bình luận (2)
AH
21 tháng 12 2021 lúc 22:44

Lời giải:
a. Vì $N$ đối xứng với $M$ qua $D$ nên $D$ là trung điểm $MN$

Tứ giác $AMCN$ có 2 đường chéo $AC, MN$ cắt nhau tại trung điểm $D$ của mỗi đường nên $AMCN$ là hình bình hành.

Mặt khác:

$ABC$ là tam giác cân nên đường trung tuyến $AM$ đồng thời là đường cao

$\Rightarrow AM\perp BC$ hay $\widehat{AMC}=90^0$
Hình bình hành $AMCN$ có 1 góc vuông nên là hcn.

b. Vì $AMCN$ là hcn nên $AN=MC$ và $AN\parallel MC$

Mà $BM=MC$ và $B,M,C$ thẳng hàng

$\Rightarrow BM=AN$ và $BM\parallel AN$
$\Rightarrow ANMB$ là hbh

c.

Diện tích $AMCN$: $S=AM.MC$. Trong đó:
$AM=\sqrt{AB^2-BM^2}=\sqrt{5^2-(6:2)^2}=4$ (cm) theo định lý Pitago)

$MC=BC:2=3$ (cm)

$\Rightarrow S=3.4=12$ (cm2)

 

Bình luận (0)
AH
21 tháng 12 2021 lúc 22:44

Hình vẽ:

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
LA
Xem chi tiết
DC
Xem chi tiết
DC
Xem chi tiết
PA
Xem chi tiết
CJ
Xem chi tiết
NH
Xem chi tiết
PM
Xem chi tiết
DN
Xem chi tiết