NL

cho tam giác ABC cân tại A ( A nhỏ hơn 90 độ) 
kẻ BM vuông góc với AC ( M thuộc AC )
kẻ CN vuông góc với AB (N thuộc AB)
a) CM : AM = AN
b) CM AMN là tam giác cân
c) I là giao điểm của BM và CN. CM AI là tia phân giác góc A 

MN giúp Mik Với ;-; 

 

NT
21 tháng 1 2022 lúc 8:38

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

Bình luận (0)
TT
21 tháng 1 2022 lúc 8:39

a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:

BC chung.

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).

=> BN = CM (2 cạnh tương ứng).

Ta có: AB = AN + BN; AC = AM + CM.

Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).

=> AM = AN.

b) Xét tam giác AMN: AM = AN (cmt).

=> Tam giác AMN cân tại A.

c) Xét tam giác ABC: 

BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).

I là giao điểm của BM và CN (gt).

=> I là trực tâm.

=> AI là đường cao.

Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.

=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
BA
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết
NC
Xem chi tiết
PT
Xem chi tiết