RO

Cho tam giác ABC cân tại A (A <90°). Gọi M. N lần lượt là trung điểm của AB và AC. a) Tinh MN biết BC =7cm. b) Chứng minh rằng tử giác MNCB là hình thang cân. c) Kẻ MI vuông góc với BN tại I, (I thuộc BN) và CK vuông góc với BN tại K (K thuộc BN). Chứng minh rằng : CK=2MI. d) Kẻ BD vuông góc với MC tại D (D thuộc MC). Chứng minh rằng DK // BC,

NT
25 tháng 10 2021 lúc 22:51

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(NM=\dfrac{BC}{2}=\dfrac{7}{2}=3.5\left(cm\right)\)

b: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

Bình luận (0)

Các câu hỏi tương tự
RO
Xem chi tiết
NL
Xem chi tiết
ON
Xem chi tiết
XT
Xem chi tiết
TC
Xem chi tiết
DN
Xem chi tiết
MK
Xem chi tiết
H24
Xem chi tiết
YM
Xem chi tiết