NT

Cho tam giác ABC cân, AH là đường cao, HI vuông góc với AC tại I a, chứng minh tam giác AHI đồng dạng với tam giác ACH và tam giác AHI đồng dạng với tam giác HCI b, gọi M và K lần lượt là trung điểm của HI và CI. Đg thẳng ÂM cắt HK tại N. Chứng minh MN là đường cao của tam giác HMK

NT
17 tháng 4 2023 lúc 18:50

a: Xét ΔAHI vuông tại H và ΔACH vuông tại H có

góc HAI chung

=>ΔAHI đồng dạng với ΔACH

Xét ΔAHI vuông tại Ivà ΔHCI vuông tại I có

góc HAI=góc CHI

=>ΔAHI đồng dạng với ΔHCI

b: Xet ΔIHC có IM/IH=IK/IC

nên MK//HC

=>MK vuông góc AH

Xet ΔAHK có

KM,HI là đường cao

KM cắt HI tại M

=>M là trực tâm

=>AM vuông góc HK tại N

=>MN là đường cao của ΔHMK

Bình luận (1)

Các câu hỏi tương tự
BT
Xem chi tiết
ND
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
LN
Xem chi tiết
MD
Xem chi tiết
SN
Xem chi tiết
KB
Xem chi tiết
TM
Xem chi tiết