DA

Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Trên tia đối của tia NP lấy điểm D sao cho ND = NP.

a) Chứng minh: Tứ giác ADCP là hình bình hành.

b) Gọi F là giao điểm của MN và DC. Giả sử MN = 3em. Tinh BC và chứng minh FD = FC.

c) Gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. Chứng minh: B, I, F thẳng hàng.

nhờ anh chị giải dùm e câu C ạ

NL
29 tháng 11 2021 lúc 12:47

ok

Bình luận (0)
NL
29 tháng 11 2021 lúc 12:49

a: Xét tứ giác ADCP có 

N là trung điểm của AC
N là trung điểm của DP

Do đó: ADCP là hình bình hành

Bình luận (1)
NL
29 tháng 11 2021 lúc 12:52

từ

dang giai7

Bình luận (0)
LD
29 tháng 11 2021 lúc 12:53

a,xét tứ giác ADCP có:

N là điểm trung của AC

N là trung điểm của  DB

Do đó ta suy ra hình ADCP là hình bình hành

Bình luận (1)
NL
29 tháng 11 2021 lúc 12:56

undefined

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
ND
Xem chi tiết
CD
Xem chi tiết
TN
Xem chi tiết
LN
Xem chi tiết
NM
Xem chi tiết
TM
Xem chi tiết
SD
Xem chi tiết
NV
Xem chi tiết