SD

Cho hình bình hành ABCD có E và F lần lượt là trung điểm của AB và DC . Gọi M N, lần lượt là giao điểm của AC với DE và BF .

a) Chứng minh tứ giác DEBF là hình bình hành.

b) Chứng minh AM=MN=NC  .

c) MN cắt EF tại O . Chứng minh B đối xứng với D qua O .
Giúp mình pls tks

TT
2 tháng 9 2021 lúc 21:03

AECF là hình bình hành => EN // AM

E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.

Tương tự, M là trung điểm của DN, do đó DM = MN.

Bình luận (0)
NT
2 tháng 9 2021 lúc 22:30

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Xét ΔCDM có 

F là trung điểm của CD

FN//DM

Do đó: N là trung điểm của CM

Suy ra: NM=NC(1)

Xét ΔANB có

E là trung điểm của AB

EM//NB

Do đó: M là trung điểm của AN

Suy ra: AM=MN(2)

từ (1) và (2) suy ra AM=MN=NC

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KD
Xem chi tiết
DN
Xem chi tiết
QN
Xem chi tiết
QN
Xem chi tiết
NH
Xem chi tiết
NL
Xem chi tiết