HT

Cho tam giác ABC (AB<AC) vuông tai A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC. Chứng minh rằng: \(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

NL
11 tháng 3 2022 lúc 22:44

Hệ thức lượng: \(AH^2=BH.CH\)

Hai tam giác vuông BEH và HFC đồng dạng: \(\Rightarrow\dfrac{BE}{FH}=\dfrac{EH}{CF}\Rightarrow BE.CF=EH.FH\)

Hai tam giác vuông AEH và CFH đồng dạng \(\Rightarrow\dfrac{AH}{CH}=\dfrac{EH}{FH}\Rightarrow AH.FH-CH.EH=0\)

 Hai tam giác vuông BEH và AFH đồng dạng \(\Rightarrow\dfrac{BH}{AH}=\dfrac{EH}{FH}\Rightarrow EH.AH-BH.FH=0\)

Ta có: \(\left(BE\sqrt{CH}+CF\sqrt{BH}\right)^2=BE^2.CH+CF^2.BH+2BE.CF.\sqrt{BH.CH}\)

\(=BE^2.CH+CF^2.BH+2BE.CF.AH\)

\(=\left(BH^2-EH^2\right)CH+\left(CH^2-FH^2\right)BH+2BE.CF.AH\)

\(=BH.CH\left(BH+CH\right)-EH^2.CH-FH^2.BH+2EH.FH.AH\)

\(=AH^2.BC+EH\left(AH.FH-EH.CH\right)+FH\left(AH.EH-FH.BH\right)\)

\(=AH^2.BC=\left(AH\sqrt{BC}\right)^2\)

\(\Rightarrow BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

Bình luận (1)
NL
11 tháng 3 2022 lúc 22:45

undefined

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
MC
Xem chi tiết
MC
Xem chi tiết
QH
Xem chi tiết
QH
Xem chi tiết