Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

PT

Cho tam giác ABC , AB=AC ; D la điểm bất kì trên cạnh AB . Tia phân giác cua góc A cắt canhk DC ở M , cắt cạnh BC ở I 

a) C/m CM= BM 

b) C/m AI là đường trung trực của đoạn thẳng BC 

c) Từ D kẻ DH vuông góc BC ( H thuộc BC ) . C/m BAC = 2 BDH

H24
17 tháng 12 2019 lúc 14:17

Hình bạn tự vẽ nha!

\(\Delta\)ABC có: AB= AC =>\(\Delta\)ABC cân tại A =>\(\widehat{ABC}\)=\(\widehat{ACB}\)

a, Xét \(\Delta\)AMB và \(\Delta\)AMC có:

     AB= AC; \(\widehat{BAM}\)=\(\widehat{CAM}\); AM chung

  => \(\Delta\)AMB= \(\Delta\)AMC (c.g.c)

  => BM= CM (2 cạnh tương ứng)

b, Xét \(\Delta\)AIB và \(\Delta\)AIC có:

     \(\widehat{IBA}\)=\(\widehat{ICA}\); AB= AC; \(\widehat{BAI}\)=\(\widehat{CAI}\)

  => \(\Delta\)AIB= \(\Delta\)AIC (g.c.g)

  => \(\widehat{AIB}\)=\(\widehat{AIC}\)\(\widehat{AIB}\)+\(\widehat{AIC}\)= 900 => AI \(\perp\)BC (1)

  => BI= IC => I là trung điểm của BC (2)

  Từ (1) và (2) => AI là đường trung trực của đoạn thẳng BC.

       

      

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
NV
Xem chi tiết
VD
Xem chi tiết
PM
Xem chi tiết
HL
Xem chi tiết
NV
Xem chi tiết
TV
Xem chi tiết
NL
Xem chi tiết