H24

cho tam giác ABC, AB > AC. Từ trung điểm D của BC kẻ đườn vuông góc với tia phân giác của góc A tại H. Đường thẳng cắt AB tại E cắt AC tại F. vẽ BM song song EF (M thuộc AC )

a, tam giác ABM cân

b, MF = BE = CF

c, Qua D vẽ đường thẳng vuông góc BC và cắt tia AH tại I. CMR:IF vuông góc AC.

NT

a: Ta có: BM//EF

EF\(\perp\)AH

Do đó: AH\(\perp\)BM

Xét ΔAMB có

AH là đường cao

AH là đường phân giác

Do đó: ΔAMB cân tại A

b: Xét ΔAFE có 

AH vừa là đường cao, vừa là đường phân giác

Do đó: ΔAFE cân tại A

=>AF=AE

Ta có: AF+FM=AM

AE+EB=AB

mà AF=AE và AM=AB

nên FM=EB

Xét ΔCMB có

D là trung điểm của CB

DF//MB

Do đó: F là trung điểm của CM

=>CF=FM

=>CF=FM=EB

Bình luận (1)