góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
Cho tam giác ABC ( AB=AC ) nội tiếp trong một đường tròn ( O ), các đường cao AG, BE, CF gặp nhau tại H.
a. Chứng minh tứ giác AEHF là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
b. Chứng minh AF.AC=AH.AG
c. Chứng minh GE là tiếp tuyến của đường tròn ( I )
Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2
Cho tam giác ABC (AB = AC) nội tiếp trong đường tròn tâm (O). Các đường cao AG, BE, CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
b) Chứng minh AF.AC = AH.AG
c, chứng minh GE là tiếp tuyến đường tròn (I)
d,chứng minh GA là phân giác của góc EGF
e, gọi K là điểm đối xứng với H qua BC . chứng minh K thuộc đường tròn
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BE và CF cắt nhau tại H.
a) Chứng minh: Tứ giác AEHF nội tiếp đường tròn.
b) Chứng minh: AB . CE = CH . BE c) Chứng minh: OA ⊥ EF
Cho tam giác ABC (AB < AC) có 3 góc nhọn nội tiếp trong đường tròn tâm O bán kính R. Gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC
a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn
b) Vẽ đường cao AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau .Suy ra AB.AC=2R.AD
cho tam giác ABC nhọn nội tiếp đường tròn O. Vẽ 2 đường cao BE và CF cắt nhau tại H.
a. Chúng minh tứ giác AEHF nội tiếp
b. chứng minh BCEF nội tiếp
Cho tam giác ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H và lần lượt cắt đường tròn tại M, N, P. Chứng minh rằng:
1) Tứ giác BFEC và AEDB nội tiếp.
2) AE.AC = AF.AB.
3) Chứng minh H là tâm đường tròn nội tiếp tam giác EFD.
cho tam giác abc AB=AC nội tiếp trong đường tròn tâm o các đường cao AG BF CFgặp nhau tại H
Chứng minh tứ giác AEHF nội tiếp và xác định tâm I của tứ giác đó
Chứng minh AF.AC=AH.AG
Chứng minh GE lf tiếp tuyến của đường tròn tâm I
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao BE, CF cắt nhau tại H
a) chứng minh tứ giác AEHF, BCEF nội tiếp
b) Đường thẳng EF và BC cắt nhau tại I, vẽ tiếp tuyến ID của đường tròn O. Chứng minh ID^2=IB*IC
c) DE, DF cắt đường tròn O tại M, N. Chứng minh MN//EF