Bài 1. CÁC ĐỊNH NGHĨA

TP

Cho tam giác ABC

a. chứng minh G là trọng tâm tam giác khi vecto GA+ vec to GB + vesto GC= vecto 0

b, với 1 điểm M bất kì ta có vecto MA+ vecto MB+ vecto MC=3 vecto MG

TL
21 tháng 8 2019 lúc 10:58

A B C D G I

a) Gọi I là trung điểm BC

Lấy D đối xứng với G qua I => I là trung điểm GD

=> Tứ giác BGCD là hình bình hành

\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GD}\\ \Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{GD}\\\Rightarrow \overrightarrow{GA}+\overrightarrow{GD}=0\\ \Rightarrow G\text{ là trung điểm }AD\\ \Rightarrow GI=\frac{1}{2}GD=\frac{1}{2}AG\\ \Rightarrow AG=2GI\\ \Rightarrow\frac{1}{2}AG+AG=AG+GI\\ \Rightarrow\frac{3}{2}AG=AI\\ \Rightarrow AG=\frac{2}{3}AI\)

=> G là trọng tâm \(\Delta ABC\)

\(\text{b) }\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\\ =3\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\\ =3\overrightarrow{MG}+0=3\overrightarrow{MG}\)

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
BN
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NY
Xem chi tiết
AT
Xem chi tiết