Ôn tập chương 1: Căn bậc hai. Căn bậc ba

NA

cho \(\sqrt{a}+\sqrt{\sqrt{b}+}\sqrt{c}=\sqrt{3}va\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}=3\)

tính M=\(\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)

VN
5 tháng 1 2018 lúc 22:15

b+c\(\ge\) \(2\sqrt{bc}\)

(a+2b)(a+2c) =\(a^2 +2ac+2ab+ 4bc= a^2+2a(b+c) +4bc\)

\(\ge\)\(a^2+4a.\sqrt{bc}+4bc=\left(a+2\sqrt{bc}\right)^2\)

\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}=a+2\sqrt{bc}\)

tương tự: \(\sqrt{\left(b+2a\right)\left(b+2c\right)}=b+2\sqrt{ac}\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}=c+2\sqrt{ab}\)

\(=>\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2b\right)\left(c+2a\right)}\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=3\)

khi a=b=c ( a,b,c nguyên dương nên a+b+c>0)

=> \(3\sqrt{a}=\sqrt{3}=>\sqrt{a}=\sqrt{b}=\sqrt{c}=\dfrac{\sqrt{3}}{3}\)

Thay vào M=\(\dfrac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
AL
Xem chi tiết
CN
Xem chi tiết
NK
Xem chi tiết
NH
Xem chi tiết
NY
Xem chi tiết
VC
Xem chi tiết
BM
Xem chi tiết
HN
Xem chi tiết
TD
Xem chi tiết