Violympic toán 9

VP

Cho \(\sqrt{1+\left(1+\frac{1}{n}\right)^2}+\sqrt{1+\left(1-\frac{1}{n}\right)^2}\) \(\left(n\ge1\right)\)

CMR: \(S=\frac{1}{a_{ }\%\%_1}+\frac{1}{a_2}+...+\frac{1}{a_{20}}\in N\)

NL
28 tháng 9 2019 lúc 14:07

\(a_n=\sqrt{2+\frac{2}{n}+\frac{1}{n^2}}+\sqrt{2-\frac{2}{n}+\frac{1}{n^2}}\)

\(\Rightarrow\frac{1}{a_n}=\frac{1}{4}\left(\sqrt{\left(n+1\right)^2+n^2}-\sqrt{n^2+\left(n-1\right)^2}\right)\)

\(\Rightarrow S=\frac{1}{4}\left(\sqrt{2^2+1}-\sqrt{1^2+0}+\sqrt{3^2+2^2}-\sqrt{2^2+1}+...+\sqrt{21^2+20^2}-\sqrt{20^2+19^2}\right)\)

\(=\frac{1}{4}\left(\sqrt{21^2+20^2}-\sqrt{1}\right)=7\)

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
DT
Xem chi tiết
KT
Xem chi tiết
HV
Xem chi tiết
DS
Xem chi tiết
ZZ
Xem chi tiết
NT
Xem chi tiết
DN
Xem chi tiết
HT
Xem chi tiết