Violympic toán 9

HV

Cho a1,a2,...,an thuộc {0;1} và a1+a2+...+an≤1.

CMR: \(\frac{a_1.a_2....a_n}{\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)}\le\frac{1}{\left(n-1\right)^n}\)

NL
1 tháng 8 2020 lúc 19:03

Ta có:

\(1-a_1\ge a_2+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_2a_3...a_n}\)

\(1-a_2\ge a_1+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_1a_3...a_n}\)

....

\(1-a_n\ge a_1+a_2+...+a_{n-1}\ge\left(n-1\right)\sqrt[n-1]{a_1a_2...a_{n-1}}\)

Nhân vế với vế:

\(\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)\ge\left(n-1\right)^n.a_1a_2...a_n\)

\(\Leftrightarrow\frac{a_1a_2...a_n}{\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)}\le\frac{1}{\left(n-1\right)^n}\)

Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{n}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TV
Xem chi tiết
ZZ
Xem chi tiết
NM
Xem chi tiết
HH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
ZZ
Xem chi tiết
VH
Xem chi tiết