Đáp án C
Giả thiết
Đặt khi đó
=> Do đó tập hợp điểm biễu diễn z là đường tròn tâm I(0;-3), bán kính R =
10
Đáp án C
Giả thiết
Đặt khi đó
=> Do đó tập hợp điểm biễu diễn z là đường tròn tâm I(0;-3), bán kính R =
10
Cho số phức thỏa mãn ( 1 + i ) z + 2 + ( 1 + i ) z - 2 = 4 2 .
Gọi m = m a x z ; n = m i n z và số phức w=m+ni. Tính w 2018 .
A. 4 1009
B. 5 1009
C. 6 1009
D. 2 1009
Cho số phức z thỏa mãn z - 2 + i + z + 1 - i = 13 Tìm giá trị nhỏ nhất m của biểu thức z + 2 - i
Cho số phức z thỏa mãn | ( z + 2 ) i + 1 | + | ( z ¯ - 2 ) i - 1 | = 10 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z|. Tính tổng S=M+m.
Cho số phức z thỏa mãn 5 z - i = z + 1 - 3 i + 3 z - 1 + i .
Tìm giá trị lớn nhất M của z - 2 + 3 i
A. M= 10 3
B. M= 1 + 3
C. M= 4 5
D. M= 9
Tìm {M} biểu diễn số phức z thỏa mãn |z-i| = |(1+i)z|.
A. {M} là w: x 2 + y + 1 2 = 2
B. {M} là w: x - 1 2 + y 2 = 1
C. {M} là w: x 2 + y + 1 2 = 1
D. {M} là w: x + 1 2 + y 2 = 2
Cho z là số phức thay đổi thỏa mãn ( 1 + i ) z + 2 - i = 4 và M(x,y) là điểm biểu diễn cho z trong mặt phẳng phức. Tìm giá trị lớn nhất của biểu thức T = x + y + 3
A. T = 4 + 2 2
B. 8
C. 4
D. 4 2
Cho số phức z thỏa mãn (2-i)z=7-i Hỏi điểm biểu diễn của z là điểm nào trong các điểm M, N, P, Q ở hình dưới?
A. Điểm P.
B. Điểm Q.
C. Điểm M.
D. Điểm N.
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .
Cho số phức z thỏa mãn (2-i)z = (2+i)(1-3i). Gọi M là điểm biểu diễn của z. Khi đó tọa độ điểm M là.
A. M(3;1)
B. M(3;-1)
C. M(1;3)
D. M(1;-3)
Có bao nhiêu giá trị nguyên của m để có đúng 2 số phức z thỏa mãn z - ( m - 1 ) + i = 8 và z - 1 + i = z - 2 + 3 i .
A. 130
B. 66
C. 65
D. 131